Hahn-Banach theorem

Theorem, (\mathbb{R} version)

Let 𝒳\mathcal{X} be an \mathbb{R}-vector space. Suppose q:𝒳q : \mathcal{X} \to \mathbb{R} is a quasi-seminorm. Suppose also we are given a linear subspace 𝒴𝒳\mathcal{Y} \subset \mathcal{X} and a linear map ϕ:𝒴\phi : \mathcal{Y} \to \mathbb{R}, such that ϕ(y)q(y),y𝒴\phi(y) \leq q(y), \quad \forall y \in \mathcal{Y} Then there exists a linear map ψ:𝒳\psi: \mathcal{X} \to \mathbb{R} such that ψ|𝒴=ϕ\psi |_\mathcal{Y} = \phi and ψ(x)q(x)\psi(x) \leq q(x) for all x𝒳x \in \mathcal{X}.

Theorem, (normed linear spaces)

#incomplete


References

  1. https://www.ucl.ac.uk/~ucahad0/3103_handout_6.pdf
  2. https://www.math.ksu.edu/~nagy/real-an/ap-e-h-b.pdf